54 research outputs found

    The Bayes Tree: Enabling Incremental Reordering and Fluid Relinearization for Online Mapping

    Get PDF
    In this paper we present a novel data structure, the Bayes tree, which exploits the connections between graphical model inference and sparse linear algebra. The proposed data structure provides a new perspective on an entire class of simultaneous localization and mapping (SLAM) algorithms. Similar to a junction tree, a Bayes tree encodes a factored probability density, but unlike the junction tree it is directed and maps more naturally to the square root information matrix of the SLAM problem. This makes it eminently suited to encode the sparse nature of the problem, especially in a smoothing and mapping (SAM) context. The inherent sparsity of SAM has already been exploited in the literature to produce efficient solutions in both batch and online mapping. The graphical model perspective allows us to develop a novel incremental algorithm that seamlessly incorporates reordering and relinearization. This obviates the need for expensive periodic batch operations from previous approaches, which negatively affect the performance and detract from the intended online nature of the algorithm. The new method is evaluated using simulated and real-world datasets in both landmark and pose SLAM settings

    A Geometric Observer for Scene Reconstruction Using Plenoptic Cameras

    Get PDF
    This paper proposes an observer for generating depth maps of a scene from a sequence of measurements acquired by a two-plane light-field (plenoptic) camera. The observer is based on a gradient-descent methodology. The use of motion allows for estimation of depth maps where the scene contains insufficient texture for static estimation methods to work. A rigourous analysis of stability of the observer error is provided, and the observer is tested in simulation, demonstrating convergence behaviour.Comment: Full version of paper submitted to CDC 2018. 11 pages. 12 figure

    PEBO-SLAM: Observer design for visual inertial SLAM with convergence guarantees

    Full text link
    This paper introduces a new linear parameterization to the problem of visual inertial simultaneous localization and mapping (VI-SLAM) -- without any approximation -- for the case only using information from a single monocular camera and an inertial measurement unit. In this problem set, the system state evolves on the nonlinear manifold SE(3)×R3nSE(3)\times \mathbb{R}^{3n}, on which we design dynamic extensions carefully to generate invariant foliations, such that the problem can be reformulated into online \emph{constant parameter} identification, then interestingly with linear regression models obtained. It demonstrates that VI-SLAM can be translated into a linear least squares problem, in the deterministic sense, \emph{globally} and \emph{exactly}. Based on this observation, we propose a novel SLAM observer, following the recently established parameter estimation-based observer (PEBO) methodology. A notable merit is that the proposed observer enjoys almost global asymptotic stability, requiring neither persistency of excitation nor uniform complete observability, which, however, are widely adopted in most existing works with provable stability but can hardly be assured in many practical scenarios

    Calibrating Focused Light-Field Cameras Using Plenoptic Disc Features

    Get PDF
    This paper proposes a new method for estimating calibration parameters of plenoptic cameras by minimizing the nonlinear plenoptic reprojection error. Novel plenoptic feature types are proposed as data for the calibration method. These plenoptic disc features are in a natural one-to-one correspondence with physical points in front of the camera. We exploit the intrinsic geometry of plenoptic cameras in a novel projection model that relates the plenoptic disc features to physical points. The resulting calibration quality, as quantified by mean reprojection error and 3D reconstruction error, outperforms recently published results

    iSAM2 : incremental smoothing and mapping using the Bayes tree

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Sage for personal use, not for redistribution. The definitive version was published in International Journal of Robotics Research 31 (2012): 216-235, doi:10.1177/0278364911430419.We present a novel data structure, the Bayes tree, that provides an algorithmic foundation enabling a better understanding of existing graphical model inference algorithms and their connection to sparse matrix factorization methods. Similar to a clique tree, a Bayes tree encodes a factored probability density, but unlike the clique tree it is directed and maps more naturally to the square root information matrix of the simultaneous localization and mapping (SLAM) problem. In this paper, we highlight three insights provided by our new data structure. First, the Bayes tree provides a better understanding of the matrix factorization in terms of probability densities. Second, we show how the fairly abstract updates to a matrix factorization translate to a simple editing of the Bayes tree and its conditional densities. Third, we apply the Bayes tree to obtain a completely novel algorithm for sparse nonlinear incremental optimization, named iSAM2, which achieves improvements in efficiency through incremental variable re-ordering and fluid relinearization, eliminating the need for periodic batch steps. We analyze various properties of iSAM2 in detail, and show on a range of real and simulated datasets that our algorithm compares favorably with other recent mapping algorithms in both quality and efficiency.M. Kaess, H. Johannsson and J. Leonard were partially supported by ONR grants N00014-06-1-0043 and N00014-10-1-0936. F. Dellaert and R. Roberts were partially supported by NSF, award number 0713162, “RI: Inference in Large-Scale Graphical Models”. V. Ila has been partially supported by the Spanish MICINN under the Programa Nacional de Movilidad de Recursos Humanos de Investigación

    VLSI architecture for motion estimation in underwater imaging

    Get PDF
    El treball desenvolupat en aquesta tesi aprofundeix i aporta solucions innovadores en el camp orientat a tractar el problema de la correspondència en imatges subaquàtiques. En aquests entorns, el que realment complica les tasques de processat és la falta de contorns ben definits per culpa d'imatges esborronades; un fet aquest que es deu fonamentalment a il·luminació deficient o a la manca d'uniformitat dels sistemes d'il·luminació artificials. Els objectius aconseguits en aquesta tesi es poden remarcar en dues grans direccions. Per millorar l'algorisme d'estimació de moviment es va proposar un nou mètode que introdueix paràmetres de textura per rebutjar falses correspondències entre parells d'imatges. Un seguit d'assaigs efectuats en imatges submarines reals han estat portats a terme per seleccionar les estratègies més adients. Amb la finalitat d'aconseguir resultats en temps real, es proposa una innovadora arquitectura VLSI per la implementació d'algunes parts de l'algorisme d'estimació de moviment amb alt cost computacional.Underwater robotics was the motivation of this work, even though computer vision and parallel VLSI architectures played the most important role. Due to their low cost, high-rate and high-resolution, vision based systems represent a good option to provide information about a vehicle position. The apparent motion of a camera mounted on an underwater vehicle can be estimated by correlating two successive frames of an image sequence. Lack of well-defined contours, as well as non-uniform illumination makes underwater scenes much more difficult to be processed than normal images. Therefore, methods frequently used in standard image processing must be modified and adapted to these particular conditions. A method based on texture characterisation of points to reject outliers from the image correspondence problem is proposed. On the other hand, a parallel implementation was used to speed-up parts of the motion estimation algorithm which have a computationally high load. A new VLSI architecture is proposed with the aim of achieving frame-rate performance
    corecore